Title Electromechanical Drive Systems	Code 1010325211010320827
Field Electrical Engineering	Year / Semester
Specialty	Course
-	core
Hours	Number of credits
Lectures: 2 Classes: 10 Laboratory: - Projects / seminars: -	4
	Language
	polish

Lecturer:

prof. dr hab. inż. Andrzej Demenko prof. dr hab. inż. Lech Nowak

Instytut Elektrotechniki i Elektroniki Przemysłowej

60-965 Poznań, ul. Piotrowo 3a

tel. +48 61 665 21 26

e-mail: Andrzej.Demenko@put.poznan.pl

Lech.Nowak@put.poznan.pl

Faculty:

Faculty of Electrical Engineering

ul. Piotrowo 3A 60-965 Poznań

tel. (061) 665-2539, fax. (061) 665-2548 e-mail: office_deef@put.poznan.pl

Status of the course in the study program:

Obligatory subject, Faculty of Electrical Engineering, Field: Electrical Engineering, Full-time second-degree studies

Assumptions and objectives of the course:

The student should obtain knowledge of the method of simulation of electromechanical system and electrical drive and methods of their control.

Contents of the course (course description):

Magnetic circuits. Non-linear and variable structure circuits. Sommerfeld theory: energy and co-energy. Analogies of electrical, magnetic and mechanical systems. Electromagnetic forces and torques? virtual work principle. Forces in linear and non-linear systems. Forces in alternating current circuits. Mechanical system dynamics: the Hamilton?s principle and Lagrange?s equations. Unified coordinates; unified energy and co-energy. Lagrange equations for electromechanical systems. Linear movement electromagnetic actuators: basic structures; the steady-state characteristics; dynamics.

Mathematical models of driving systems. The circuits models: natural and transformed current coordinates. Transformation of multi-phase systems. Transformation of the rotary systems.

The symmetrical components model.

Introductory courses and the required pre-knowledge:

Basic knowledge about electrical and magnetic circuits theories. The knowledge of the principles of electrical machines

Courses form and teaching methods:

Multimedia supported lectures, classes exercises related to practical problems

Form and terms of complete the course - requirements and assessment methods:

Verification of knowledge during the classes, tests

Basic Bibliography:

.

Additional Bibliography:

-